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CHAPTER 5 

MOTION OF EXTENDED BODIES IN METRIC THEORIES OF GRAVITATION 

27. Determination of the Tensor of Passive Gravitational Mass 

Among possible theories of gravitation metric theories occupy a special place, i.eo, 
theories of gravitation according to which the action of the gravitational field on matter 
is realized in terms of a metric tensor of Riemannian space--time. The unified description 
in these theories of the motion of matter in a gravitational field makes it possible, apart 
from the details of one gravitational theory or another, to compute the motion of matter 
simultaneously for an entire class of metric theories of gravitation. It was just with this 
purpose Will and Nordtvedt [11] developed the parametrized post-Newtonian formalism which for 
particular values of the parameters coincide with the post-Newtonian limit of any metric 
theory of gravitation. Therefore, this formalism is rather widely used not only for the cal- 
culations of various experiments but also for the analysis of various general questions. 

One of these is the question of the relation between the inertial and gravitational 
masses of an extended body in various metric theories of gravitation and the effect of this 
relation on the character of the motion of the center of mass of the body~ Investigation of 
this question has been the focus of attention of a number of authors. In particular, Will 
[9], having in mind subsequent application of the results of his computations to the system 
including the sun and one of its planets, showed that the post-Newtonian equations of motion 
of the center of mass of an extended body (the planet) in the gravitational field of a point 
body at rest (the sun) have the form 

M0 ~ Z14~ = ----~ (27. I) 

where M is the mass of the extended body~ M0 is the active gravitational mass of the point 
body at rest, ~ are the components of the acceleration of the center of mass of the extended 
body, and R is the distance between the point body and the center of mass of the extended 

body. 

The following expression was obtained for the vector f~ in this case: 

y ~  = M {rL ~ I 1 - -  (41~ - -  cq - -  ~ - -  3 - -  ~ -t- ~2) QI + (~162 ~ @- $2) a ~ r ~ } ,  

where n ~ = R~/R, and ~2 and ~2 ~ are the post-Newtonian corrections defined by relations (18.3). 

Will [9] defined the tensor of passive gravitational mass in correspondence with the 
equality 

Because of this definition, he arrived at the conclusion that this tensor has the form 

m ~  = _y=~ll_(4tS_~zl_y_3_~i_i_o~2)f~ ] __(o~2_~i+~2)f~,z~. (27.2) 

On the basis of this expression and data obtained in the laser ranging of the moon, the 
authors of the works [8, 12] arrived at the conclusion that in the post-Newtonian approxima- 
tion the passive gravitational mass of an extended body is equal to its inertial mass, and 
hence the center of mass of an extended body moves along geodesics of Riemannian space--time. 

However, these conclusions are incorrect, since in obtaining formulas (27.i) and (27.2) 
Will assumed that the velocity of the extended body about the sun (v ~o 10 -~ c) was equal to 
zero. Consideration of the motion of the extended body, as we shall show below, in this de- 
termination of the tensor of the passive gravitational mass leads to the somewhat different 
formula 
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In this case data obtained in the laser ranging of the moon with consideration of other ex- 
periments provide the basis for the assertion that in the post-Newtonian approximation the 
passive gravitational mass of an extended body is not equal to its inertial mass. 

In this connection it should he noted that the equality or nonequality of the passive 
gravitational mass of an extended body so introduced to its inertial mass cannot serve as 
an indication of how the center of mass of the extended body moves: along a geodesic of 
space--time or not. As we shall see below, equality of these masses guarantees only the coin- 
cidence of the post-Newtonian equations of motion of the center of mass of the extended body 
with the corresponding equations of Newton's theory which in no measure is a condition that 
they coincide with the equations of geodesics. 

In a subsequent work [10] Will did not make the assumption that the extended body was 
equal to zero, although he wrote the equations of the center of mass of the extended body 
contained in the binary system in the form 

M~ ~ ~ ~p  0 ~ - ~ -  MaN, (27.3 ) 

where the tensor ~5, depending on the characteristics of the extended body, he defined, as 
previously, by the expression (27.2). All the remaining terms on the right side of the equa- 
tions of motion he called N-body accelerations and included them in the term a~. However, 
this separation is arbitrary, since the quantity a~, as is easily seen [see formulas (6.42), 
(6.44), (6.50)-(6.52) of the work [10]), contains terms of the same structure as the first 
term on the right side of (27.3): 

~B 
Since the tensor L(I ) depends on the characteristics of the first body (in particular, on 
the square of its velocity), it can be included in the expression for m~ ~ on the right side 
of the equations of motion (27.3). 

Thus, the partition of expression (27.3) proposed by Will is arbitrary and is not in any 
way justified except by the desire to achieve at any price formal equality in the post-Newtonian 
approximation of the passive gravitational mass and the inertial mass of an extended body in 
the general theory of relativity. Now in Einstein's theory, and this is a general situation, 
there are no conservation laws of matter and gravitational field taken together. A special 
consequence of this situation, as shown in the first chapter of the present work, is the as- 
sertion that the inertial mass defined in the general theory of relativity has no physical 
meaning. Therefore, in Einstein's theory its comparison with the passive gravitational mass 
is physically meaningless. 

However, in metric theories of gravitation possessing conservation laws of matter and 
gravitational field taken together, the concept of inertial mass has a rigorous physical 

meaning: 

m=!dV[t~+t~]. (27.4) 

It follows from this definition that the inertial mass of a body depends not only on its in- 
ternal characteristics but also on the square of the velocity of this body. It is therefore 
to be expected that the passive gravitational mass of an extended body will also depend not 
only on its internal structure but on the square of its velocity. Thus, in metric theories 
of gravitational possessing conservation laws of matter and gravitational field taken to- 
gether comparison of the passive and active gravitational masses of an extended body with 
its inertial mass is of undoubted interest. 

How is the passive gravitational mass to be defined in this case? It is natural but 
somewhat formal that the tensor of passive gravitational mass of an extended body should be 
defined directly from the equations of motion if in the post-Newtonian approximation they 
can be represented in the quasi-Newtonian form 

M~ = = t,n,~O~, ( 2 7.5 ) 

where the tensor m~ B must depend only on the characteristics of the first body and the gen- 
eralized Newtonian potential qg only on the characteristics of the second body and the 

1824 



distance between the bodies. If these conditions are not satisfied, as is the case in the 
general case of an arbitrary post-Newtonian system, then the concept of a tensor of passive 
gravitational mass becomes pointless. It is not possible to give another more reasonable 
definition of the tensor of passive gravitational mass. 

Thus, the solution of the question of the relation between the passive gravitational 
mass and the inertial mass of an extended body and of the character of the motion of its 
center of mass to be found in the scientific literature is incorrect, and this led us to the 

special study of it [2, 3]. 

It should, however, be noted that the initial expression we adopted in [2, 3] for the 
metric of Riemannian space--time is somewhat different from the corresponding expressions 
used by other authors. For convenience of comparison of our results with the results of other 
authors in the present work we have therefore chosen the initial metric of Riemannian space-- 
time in the form (16.1). Moreover, to increase the generality of the investigation, in the 
present work we expand the equations of motion of the extended body in the small parameter 
L/R ~ I (L is a characteristic dimension of the body and R is the distance between the bodies) 
to higher orders than in [2, 3]. 

As we shall see below, however, these changes do not affect the final conclusions re- 
garding the character of the motion of the center of mass of the extended body. 

We ~hall consider a problem of astronomical type: we assume that the system to be studied 
consists of two extended bodies moving in the gravitational field they create and a distance 
from one another considerably greater than their linear dimensions. One of the bodies of this 
system we provisionally call the first body and the other the second body~ We assume that 
these bodies consist of an ideal fluid with an energy--momentum tensor (of weight I) having the 
form (16.7). 

We shall also assume that the post-Newtonian formalism is applicable to this system. For 
this it is necessary that the maximal values of the gravitational potential U, the square of 
the characteristic velocity v 2, the specific pressure P/P0, and the specific internal energy 

have approximately the same order of smallness ~2, where e ~ I is some dimensionless param- 
eter. In this case the bodies will be located in the near zone of the gravitational radia- 
tion caused by their motion. Therefore, in the region occupied by these bodies the changes 
of all quantities with time will be caused primarily by the motion of matter and hence the 
partial derivatives of all quantities with respect to time will be small as compared to the 
partial derivatives with respect to the coordinates. As is known [11], any theory of gravi- 
tation in which the natural geometry for the motion of matter is a Riemannian geometry gen- 
erates the metric (16.1) in the post-Newtonian approximation. 

This metric in the general case contains 10 arbitrary parameters y, $, ~I~ ~2~. e3~ ~i, 
~2, ~3, ~%, ~w and three components w e of the velocity of the reference system relative to 
some hypothetical universal rest system. In computing the motion of the bodies in [9, 7] it 
was assumed that w e = 0, ~w = O. In the present work we shall use the metric of Riemannian 
space (16.1) without this simplification. We note that the model of extended bodies we adopt 
describes bodies in which the pressure is isotropic. Therefore, our calculation is appli- 
cable only to those physical situations where the magnitude of the shear stresses in extended 
bodies can be neglected as compared with the magnitude of the isotropic pressure. If this is 
not the case, then it is necessary to consider the contribution of shear stresses both in the 
energy-momentum tensor of matter (16.7) and in the metric (16.1). 

It should also be emphasized that the calculation we propose is applicable only to those 
metric theories of gravitation which possess conservation laws of the energy--momentum of mat- 
ter and the gravitational field taken together. For theories of gravitation not possessing 
these conservation laws, the calculation must be carried out specially within the framework 
of each such theory, and the conclusions of the present work are not applicable to them. 

28. Acceleration of the Center of Mass of an Extended Body in a 

Weak Gravitational Field 

To define the force by which the second body acts on the first we must construct the 
equations of hydrodynamics (the equations of motion of an element of ideal fluid) in Rie- 
mannian space--time with metric (16.1). Following Fock [6], to construct these equations we 
proceed from the covariant equation of the density of the energy-~nomentum tensor of matter 
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